| 1. Title | Aeroplane aerodynamics, structures and systems II (Mechanics Repair and Maintenance) | |---------------|---| | 2. Code | EMAMBA504A | | 3. Range | The knowledge is needed for a wide range of aeroplane repair and maintenance works, e.g. applicable to aircrafts, analysis, machineries, airworthiness, airframes, avionics, materials, tests, documentation, safety, health and tools etc. | | 4. Level | 5 | | 5. Credit | 3 | | 6. Competency | Performance Requirement | | | Able to understand the theory of aeroplane aerodynamics and flight controls Operation and effect of: Roll control: ailerons and spoilers. Pitch control: elevators, stabilators, variable incidence stabilisers and canards. Yaw control, rudder limiters. Control using elevons, ruddervators. High lift devices, slots, slats, flaps, flaperons. Drag inducing devices, spoilers, lift dumpers, speed brakes. Effects of wing fences, saw tooth leading edges. Boundary layer control using, vortex generators, stall wedges or leading edge devices. Operation and effect of trim tabs, balance and antibalance (leading) tabs, servo tabs, spring tabs, mass balance, control surface bias, aerodynamic balance panels. | - ◆ Able to understand the theory of high speed flight - Speed of sound, subsonic flight, transonic flight, supersonic flight, Mach number, critical Mach number, compressibility buffet, shock wave, aerodynamic heating, area rule. - Factors affecting airflow in engine intakes of high speed aircraft. - Effects of sweepback on critical Mach number. - ◆ Able to understand the general concept of the airframe structures - Airworthiness requirements for structural strength. - Structural classification, primary, secondary and tertiary. - Fail safe, safe life, damage tolerance concepts. - Zonal and station identification systems. - Stress, strain, bending, compression, shear, torsion, tension, hoop stress, fatigue. - Drains and ventilation provisions. - System installation provisions. - Lightning strike protection provision. - Construction methods of: stressed skin fuselage, formers, stringers, longerons, bulkheads, frames, doublers, struts, ties, beams, floor structures, reinforcement, methods of skinning, anti-corrosive protection, wing, empennage and engine attachments. • - Structure assembly techniques: riveting, bolting, bonding. - Methods of surface protection, such as chromating, anodising, painting. - Surface cleaning. - Airframe symmetry: methods of alignment and symmetry checks. - ♦ Able to understand the aeroplanes airframe structures - Fuselage (ATA 52/53/56) - Construction and pressurisation sealing. - Wing, stabiliser, pylon and undercarriage attachments. - Seat installation and cargo loading system. - Doors: construction, mechanisms, operation and safety devices. - Windows and windscreen construction and mechanisms. - Wings (ATA 57) - · Construction. - Fuel storage. - Landing gear, pylon, control surface and high lift/drag attachments. - Stabilisers (ATA 55) - Construction. - Control surface attachment. - Flight control surfaces (ATA 55/57) - Construction and attachment. - Balancing mass and aerodynamic. - Nacelles/Pylons (ATA 54) - · Construction. - Firewalls. - Engine mounts. - ♦ Able to understand the air conditioning and cabin pressurisation (ATA 21) - Air supply - Sources of air supply including engine bleed, APU and ground cart. - Air conditioning - Air conditioning systems. - Air cycle and vapour cycle machines. - Distribution systems. - Flow, temperature and humidity control system. - Pressurisation - Pressurisation systems. - Control and indication including control and safety valves. - Cabin pressure controllers. - Safety and warning devices - Protection and warning devices. - ◆ Able to understand the Instruments/Avionic Systems - Instrument Systems (ATA 31) - Pitot static: altimeter, air speed indicator, vertical speed indicator. - Gyroscopic: artificial horizon, attitude director, direction indicator, horizontal situation indicator, turn and slip indicator, turn coordinator. - Compasses: direct reading, remote reading. - Compass compensation and adjustment. - Angle of attack indication, stall warning systems. - Other aircraft system indication. - Avionic Systems - Fundamentals of system lay-outs and operation of: - Auto Flight (ATA 22). - Communications (ATA 23). - Navigation Systems (ATA 34). - ◆ Able to understand the electrical power (ATA 24) - Batteries Installation and Operation. - DC power generation. - AC power generation. - Emergency power generation. - Voltage regulation. - Power distribution. - Inverters, transformers, rectifiers. - Circuit protection. - External / Ground power. - ♦ Able to understand the equipment and furnishings (ATA 25) - Emergency equipment requirements. - > Seats, harnesses and belts. - Cabin lay-out. - Equipment lay-out. - Cabin Furnishing Installation. - · Cabin entertainment equipment. - Galley installation. - Cargo handling and retention equipment. - Airstairs. - ◆ Able to understand the fire protection (ATA 26) - Fire and smoke detection and warning systems. - Fire extinguishing systems. - System tests. - ◆ Able to understand the flight controls (ATA 27) - Primary controls: aileron, elevator, rudder, spoiler. - Trim control. - Active load control. - High lift devices. - Lift dump, speed brakes. - System operation: manual, hydraulic, pneumatic, electrical, fly-by-wire. - Artificial feel, Yaw damper, Mach trim, rudder limiter, gust locks. - Balancing and rigging. - Stall protection system. - ♦ Able to understand the fuel systems (ATA 28) - System lay-out. - Fuel tanks. - Supply systems. - Dumping, venting and draining. - Cross-feed and transfer, Indications and warnings. - Refuelling and defuelling. - Longitudinal balance fuel systems. - Able to understand the hydraulic power (ATA 29) - System lay-out. - Hydraulic fluids. - Hydraulic reservoirs and accumulators. - Pressure generation: electric, mechanical, pneumatic. - Emergency pressure generation. - Pressure Control. - Power distribution. - Indication and warning systems. - Interface with other systems. - ◆ Able to understand the ice and rain protection (ATA 30) - Ice formation, classification and detection. - Anti-icing systems: electrical, hot air and chemical. - De-icing systems: electrical, pneumatic and chemical. - Rain repellant and removal. - Probe and drain heating. - ♦ Able to understand the landing gear (ATA 32) - Construction, shock absorbing. - Extension and retraction systems: normal and emergency. - Indications and warning. - Wheels, brakes, antiskid and autobraking. - Tyres. - Steering. - ◆ Able to understand the lights system (ATA 33) - External: navigation, anti-collision, landing, taxiing, ice. - Internal: cabin, cockpit, cargo. - Emergency. - ◆ Able to understand the oxygen system (ATA 35) - System lay-out: cockpit, cabin. - Sources, storage, charging and distribution. - Supply regulation. - Indications and warnings. - ♦ Able to understand the pneumatic/vacuum (ATA 36) - System lay-out. - Sources: engine / APU, compressors, reservoirs. - ground supply. - Pressure control. - Distribution. - Indications and warnings. - Interfaces with other systems. - ♦ Able to understand the Water/Waste (ATA 38) - Water system lay-out, supply, distribution, servicing and draining. - Toilet system lay-out, flushing and servicing. - Corrosion aspects. - ♦ Able to understand the On Board Maintenance Systems (ATA 45) - Central maintenance computers. - Data loading system. - Electronic library system. - Printing. - Structure monitoring (damage tolerance monitoring). - 6.2 Theoretical and practical aspects - ♦ Able to apply the following knowledge in the aircraft maintenance. - Theory of flight. - General concepts of airframe structures - Aeroplanes airframe structures - Air conditioning and cabin pressurisation (ATA 21) - Instrument systems (ATA 31) - Electrical power (ATA 24) - Equipment and furnishings (ATA 25) - Fire protection (ATA 26) - Flight controls (ATA 27) - Fuel systems (ATA 28) - Hydraulic power (ATA 29). - Ice and rain protection (ATA 30). - Landing gear (ATA 32). - Lights (ATA 33). - Oxygen (ATA 35). - Pneumatic/Vacuum (ATA 36). - Water/Waste (ATA 38). - On board maintenance systems (ATA 45). ## 6.3 Professional approach - ◆ Able to understand the principal elements of the subjects. - ◆ Able to understand the general knowledge of the theoretical and practical aspects of the following subjects. - Aeroplane aerodynamics and flight controls. - High speed flight. - General concepts of airframe structures - Aeroplanes airframe structures - Air supply of air conditioning. - Instrument systems (ATA 31). - Equipment and furnishings (ATA 25). - On board maintenance systems (ATA 45). - ♦ Able to apply the knowledge in the aircraft maintenance task. - Able to understand the detailed knowledge of the theoretical and practical aspects of the following subjects. - Air conditioning and cabin pressurisation (ATA 21). - · Air conditioning. - Pressurisation. - Safety and warning devices. - Electrical power (ATA 24). - Fire protection (ATA 26). | Criteria | |---------------| | 7. Assessment | | |